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Error and repair catastrophes: A two-dimensional phase diagram in the quasispecies model
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This paper develops a two-gene, single fitness peak model for determining the equilibrium distribution of
genotypes in a unicellular population which is capable of genetic damage repair. The first gene, denoted by
sv ia , yields a viable organism with first-order growth rate constantk.1 if it is equal to some target ‘‘master’’
sequencesv ia,0. The second gene, denoted bys rep , yields an organism capable of genetic repair if it is equal
to some target ‘‘master’’ sequences rep,0. This model is analytically solvable in the limit of infinite sequence
length, and gives an equilibrium distribution which depends onm[Le, the product of sequence length and per
base pair replication error probability, ande r , the probability of repair failure per base pair. The equilibrium
distribution is shown to exist in one of the three possible ‘‘phases.’’ In the first phase, the population is
localized about the viability and repairing master sequences. Ase r exceeds the fraction of deleterious muta-
tions, the population undergoes a ‘‘repair’’ catastrophe, in which the equilibrium distribution is still localized
about the viability master sequence, but is spread ergodically over the sequence subspace defined by the repair
gene. Below the repair catastrophe, the distribution undergoes the error catastrophe whenm exceeds lnk/er ,
while above the repair catastrophe, the distribution undergoes the error catastrophe whenm exceeds lnk/fdel ,
where f del denotes the fraction of deleterious mutations.

DOI: 10.1103/PhysRevE.69.011902 PACS number~s!: 87.23.Kg, 87.16.Ac, 64.90.1b
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I. INTRODUCTION

To cope with genetic damage to their genomes, cellu
organisms have developed a host of mechanisms to re
and, if necessary, replace damaged DNA. Environme
damage due to mutagens, metabolic free radicals, and ra
tion is repaired by enzymes which continuously scan
DNA molecule and repair the damaged portions. Replicat
errors are also repaired by several methods. InEscherichia
coli, the DNA replicase Pol III has a built-in proofreadin
mechanism which results in a replication error probability
1027–1026 per base pair. Furthermore, immediately follow
ing replication, a second proofreading mechanism, known
mismatch repair, identifies and corrects mismatched b
pairs. InE. coli, the mismatch repair system reduces the er
probability to 10210–1028 per base pair@1#.

The DNA mismatch repair system is of considerable
terest because it is believed that mismatch repair defic
strains, or mutators, play an important role in the emerge
of antibiotic drug resistance and cancer@2–8#. Because mu-
tators have mutation rates which are 10–10 000 times hig
than wild-type strains, they can more rapidly adapt to hos
environments, thereby explaining their potential importan
in understanding drug resistance. However, mutators can
cumulate genetic damage much more rapidly than nonm
tors, and hence can serve as an intermediate for the ap
ance of cancerous cells in multicellular organisms.

In an earlier work, we developed a simple, analytica
solvable model to determine the equilibrium population
mutators in an asexual, unicellular population of replicat
organisms@9# ~we should point out a related study, Ref.@10#,
that was published almost simultaneously to us!. The main
result of this model was that at equilibrium, the populati
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can exist in one of two ‘‘phases.’’ For sufficiently efficien
repair, the population was shown to exist in a ‘‘repaire
phase, in which the fraction of repairers is a finite, posit
quantity which depends only on the efficiency of repair a
the fraction of the genome coding for repair. The equilibriu
genotype of the population is localized about the ‘‘maste
subsequence for which repair is functioning. When the rep
efficiency drops below a critical value, the population de
calizes over the repair sequence subspace, and the fracti
repairers becomes zero in the limit of infinite genome leng
This phase is naturally termed the ‘‘mutator’’ phase. In R
@9# the transition from the repairer to the mutator phases w
called the repair catastrophe.

The solution of the model presented in Ref.@9# is incom-
plete, in that it describes the equilibrium behavior of t
system in the low-mutation rate regime. This allowed one
assume that only point mutations were important, consid
ably simplifying the calculations. However, another pha
transition has also been shown to occur when the muta
rate becomes too large. Above a critical mutation rate, re
cative selection can no longer recover the loss of informat
due to genetic damage. This phenomenon is known as
error catastrophe, and was first predicted to occur by Ei
and co-workers@11,12#. It has since been studied in a num
ber of theoretical papers@13–29# ~and references therein!,
and has also been observed experimentally@30,31#.

Because the model presented in our paper was o
solved in the point-mutation regime, it did not incorpora
the effect of the error catastrophe. The assumption unde
ing our initial approach was that mutators, despite th
higher than wild-type mutation rates, are still viable orga
isms, and so live well below the error catastrophe.

The method used in our paper has since been general
so that it is no longer necessary to assume only point m
tions. Thus, the interplay between the error and repair ca
trophes can be studied, making this paper a natural exten
©2004 The American Physical Society02-1
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of the work presented in Ref.@9#.
This paper is organized as follows. In the following se

tion, we present a brief review of the quasispecies equat
developed by Eigen, which are often the starting point
studies in evolutionary dynamics. We continue in Sec. III
developing the form of the quasispecies equations for
mutator model. We solve this model in Sec. IV. Specifica
we solve for the equilibrium fraction of viable organisms a
viable repairers, which will allow the construction of a tw
dimensional phase diagram incorporating both the error
repair catastrophes. We study the localization of the distri
tion and its limiting forms, comparing the results in certa
cases with the corresponding results obtained in Ref.@9#.
Finally, in Sec. V we present our conclusions.

II. THE QUASISPECIES EQUATIONS

The quasispecies equations are possibly the simples
modeling the evolutionary dynamics of a unicellular, asex
population of replicating organisms. We letns denote the
number of organisms with genomes, and ks denote the
first-order growth rate constant of an organism with geno
s. If km(s,s8) is taken to be the first-order mutation ra
constant froms to s8, then the time evolution ofns is given
by

dns

dt
5ksns1 (

s8Þs

@km~s8,s!ns82km~s,s8!ns#. ~1!

The mappingK:$s%→$ks% defines what is called the fitnes
landscape. In general, the fitness landscape will be time
pendent, since organisms usually live in dynamic envir
ments@8,16#. However, since in this paper we wish to stu
equilibrium behaviors, we take the fitness landscape to
static.

The conversion to Eigen’s quasispecies equations is
complished by converting from absolute populations
population fractions. Thus, we definen5(sns and xs

5ns /n. When reexpressed in terms of thexs , the dynami-
cal equations become

dxs

dt
5(

s8
km~s8,s!xs82k̄~ t !xs , ~2!

where k̄(t)[(sksxs and km(s,s)[ks

2(s8Þskm(s,s8). Note thatk̄(t) is simply the mean fit-
ness of the population, and arises as a normalization t
which ensures that(sxs51 at all times.

We may simplify the notation further by definingxW
5(xs) to be the vector of population fractions, andA
[@Ass85km(s8,s)# to be the matrix of mutation rate con
stants. We may also definekW to be the vector of growth rate
constants, so thatk̄(t)5kW •xW . Then we obtain

dxW

dt
5AxW2~kW •xW !xW . ~3!
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Eigen showed that the system evolves to an equilibrium
tribution given by the eigenvector corresponding to the la
est eigenvalue ofA @11,12#. If the equilibrium distribution is
denoted byxWequil , and the largest eigenvalue is denoted
l, then it is clear thatl5kW •xWequil .

To obtain an expression forkm(s8,s), let us assume tha
mutations occur due to replication errors. We take a per b
pair replication error probability ofes8 for s8. Let l
[DH(s,s8) denote the Hamming distance betweens and
s8. Then it is a standard result~see, e.g., Ref.@12#! that

km~s8,s!5ks8S es8
S21D l

~12es8!
L2 l . ~4!

III. A TWO-GENE MODEL INCORPORATING ERROR
REPAIR

A simple model to study quasispecies dynamics with
netic repair is a two-gene, single fitness peak~SFP! model.
We take our genome to have an alphabet sizeS, composed of
‘‘bases’’ 0,1, . . . ,S21. The first gene, denoted bysv ia , has
length Lv ia , and controls the viability of the organism. W
assume that there is a unique, ‘‘fit’’ sequencesv ia,0 such that
ks5k.1 if sv ia5sv ia,0. Otherwise,ks51. There is no
loss of generality in assumingks51 for the unfit sequences
since time may always be rescaled so that the unfitks be-
comes 1.

The second gene, denoted bys rep , has lengthLrep , and
is responsible for the enzymatic machinery involved in
pair. As with viability, there is a unique sequence,s rep,0, for
which repair is functioning, and has a per base pair fail
probability ofe r . For all others rep repair is inactivated and
the organism is a mutator.

For the mutators, the per base pair replication error pr
ability is taken to bee. Thus, fors rep,0, the per base pair
replication error probability ise re. If es denotes the per bas
pair replication error probability of genomes, then es

5e re if s rep5s rep,0, ande otherwise.
This model is clearly an oversimplification of the actu

genome and replication dynamics of an organism. Never
less, a two-gene, SFP model is probably the simplest
studying evolutionary dynamics with genetic damage rep
and it is therefore a natural starting point before consider
more complicated systems. Despite its simplicity, this mo
still yields sufficiently rich behavior to be of interest.

To determine the equilibrium distribution of genotypes
this model, note that, by symmetry, we may assume thaxs

depends only on the Hamming distancel
[DH(sv ia ,sv ia,0) and l 8[DH(s rep ,s rep,0) @22#. We de-
fine the Hamming class CH( l ,l 8)5$s
5sv ias repuDH(sv ia ,sv ia,0)5 l ,DH(s rep ,s rep,0)5 l 8%. It is
readily shown thatCH( l ,l 8) contains

Cll 8[S Lv ia

l D S Lrep

l 8
D ~S21! l 1 l 8

elements. Sincexs is assumed to depend only on the Ham
ming class ofs, we may definexll 85xs for sPCH( l ,l 8).
2-2
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We may also note thatks5k if l 50 and 1 otherwise, so thatks depends only onl. Therefore, we redenoteks by k l .
Similarly, we redenotees by e l 8 . Finally, definezll 85Cll 8xll 8 to be the total fraction of the population inCH( l ,l 8).

We wish to express the quasispecies equations in terms of thezll 8 . The final result, derived in Appendix A, is given by

dzll 8
dt

5 (
l 150

Lv ia2 l

(
l 250

l

(
l 1850

Lrep2 l 8

(
l 2850

l 8 S Lv ia2 l 2 l 11 l 2

l 2
D S l 11 l 2 l 2

l 1
D S Lrep2 l 82 l 181 l 28

l 28
D S l 181 l 82 l 28

l 18
D k l 11 l 2 l 2

e
l
181 l 82 l

28

l 21 l 28 ~1

2e l
181 l 82 l

28
!Lv ia1Lrep2 l 2 l 82 l 12 l 18S e l

181 l 82 l
28

S21
D l 11 l 18S 12

e l
181 l 82 l

28

S21
D l 1 l 82 l 22 l 28

zl 11 l 2 l 2 ,l
181 l 82 l

28
2@~k21!z011#zll 8 ,

~5!

wherez0[(
l 850

Lrep z0l 8 is simply the total fraction of viable organisms.
We now let the viability and repair sequence lengthsLv ia ,Lrep approach̀ , while keepinga[Lv ia /Lrep , m[Le, ande r

fixed, whereL[Lv ia1Lrep is the total sequence length. Sincee l
181 l 82 l

28
5e or e re, it is clear thatm l

181 l 82 l
28
[Le l

181 l 82 l
28

remains fixed in the limitL→`.
We claim that, for a givenl ,l 8, the only terms which survive the limiting process are thel 15 l 1850 terms. We then note tha

asLv ia ,Lrep→`,

S Lv ia2 l 1 l 2

l 2
D e

l 82 l
28

l 2 → 1

l 2!
~Lv iae l 82 l

28
! l 25

1

l 2! S a

a11
m l 82 l

28D l 2

~6!

and

~12e l 82 l
28
!Lv ia2 l→e2(a/a11)m l 82 l 28. ~7!

Taking similar limits for theLrep terms, we obtain the infinite sequence length equations

dzll 8
dt

5 (
l 250

l

(
l 2850

l 8 k l 2 l 2

l 2! l 28!
a l 2S m l 82 l

28

a11
D l 21 l 28

e2m l 82 l 28zl 2 l 2 ,l 82 l
28
2k̄~ t !zll 8 . ~8!
se

co

b-
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To understand why only thel 15 l 1850 terms survive, let us
consider the mutational contribution from tho
zl 11 l 2 l 2 ,l

181 l 82 l
28

for which at least one ofl 1 ,l 18.0. A s8

PCH( l 11 l 2 l 2 ,l 181 l 82 l 28) was obtained from a s
PCH( l ,l 8) by changing l 1 of the Lv ia2 l bases insv ia
which were equal to the corresponding bases insv ia,0, and
similarly for l 18 and s rep . Therefore, forsv ia8 to mutate to
sv ia , l 1 of the changed bases must back mutate to the
responding bases insv ia,0. However, in the limit of infinite
sequence length, the number of unchanged bases insv ia8 ,
given byLv ia2 l 12 l 1 l 2, becomes infinite, and so the pro
ability of a mutation occurring at one of those bases
01190
r-

-

proaches 1, so that the probability of back mutation go
to 0.

This heuristic argument is given a more rigorous just
cation in Appendix A. As a simple check, we also ensure t
total population is conserved in the limiting process.

IV. SOLUTION OF THE MODEL

A. The phase diagram

We begin our solution of the model by computing th
equilibrium values ofz0 andz00. We begin with the dynami-
cal equations forz0l 8 ,
dz0l 8
dt

5
k

l 8!
S e rm

a11D l 8
e2ermz001ke2m (

l 1850

l 821
1

l 18!
S m

a11D l 18

z0,l 82 l
18
2@~k21!z011#z0l 8. ~9!

We may sum froml 8502` to obtain the dynamical equation forz0. Together with the dynamical equation forz00, we have
the pair of equations

dz0

dt
5k~e2(a/a11)erm2e2(a/a11)m!z001@ke2(a/a11)m2~k21!z021#z0 , ~10!
2-3
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dz00

dt
5@ke2erm2~k21!z021#z00. ~11!

We may obtain the equilibrium solution of these equatio
by setting the left-hand sides to zero. A summary of
possible solutions is given in Table I. We should note t
with z0 andz00 calculated, it is a relatively simple matter t
recursively compute the equilibrium values of all thezll 8 .
This is detailed in Appendix B.

We need to map out the regions in the (m,e r) parameter
space for which the various solutions are valid. Fi
of all, note that we must havez0P@0,1# and z00P@0,z0#.
For the first solution set to hold, we must therefore ha
0<ke2erm21<k21. The second inequality is automat
cally satisfied. For the first inequality to hold, we mu
havee rm< ln k. In order forz00P@0,z0#, we must then have
0< (e2erm2e2(a/a11)m) / (e2(a/a11)erm2e2(a/a11)m) < 1.
Again, the second inequality is automatically satisfied,
the first only holds whene r<a/a11. Therefore, the first
solution pair is only valid whene rm< ln k, and e r<a/(a
11). However, the other two solution pairs may still yie
physical values for (z0 ,z00) in the domain of validity of the
first solution pair. To resolve this issue, we note that we w
a solution which givesz00→1 ase r→0. That is, if repair is
perfect, then at equilibrium the population should only co
sist of viable repairers. Therefore, ase r→0, we expect the
first solution pair to hold, since it gives the correct limitin
behavior. By continuity, the first solution pair holds over t
setV1[$(m,e r)P@0,̀ )3@0,1#ue rm< ln k,er<a/a11%.

As e r is increased beyonda/a11, the first solution is no
longer valid, but the second solution may still be valid if
<ke2(a/a11)m21<k21. Again, the second inequality i
automatically satisfied, while the first only holds whe
(a/a11)m< ln k. The third solution pair may still be physi
cal in the domain of validity of the second solution pair.
resolve this issue, we may note that we want a solut
which gives z0→1 as m→0. That is, in the limit of no
replication errors, all of the population is viable. Therefo
as m→0 with e r.a/a11, we expect the second solutio
pair to hold, since it gives the correct limiting behavio
By continuity, the second solution pair holds ov
the set V2[$(m,e r)P@0,̀ )3@0,1#u(a/a11)m< ln k,er
.(a/a11)%. The third solution is then the solution over th
domainV3[(@0,̀ )3@0,1#)/(V1øV2).

TABLE I. The possible equilibrium values of (z0 ,z00) as a func-
tion of m ande r .

z0 z00

ke2erm21

k21

e2erm2e2(a/a11)m

e2(a/a11)erm2e2(a/a11)m
z0

ke2(a/a11)m21

k21
0

0 0
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Figure 1 illustrates the three solution domainsV1 ,V2 ,V3
for a52, k510. In V1, the population is clustered within
finite Hamming distances about the viable and repair ‘‘m
ter’’ sequences. A finite positive fraction of the population
viable, and of the viable organisms, a finite positive fracti
of the population is capable of repair. Ase r is increased
beyonde r ,crit[a/a11, so that (m,e r)PV2, the population
becomes delocalized over the repair gene subspace, an
fraction of repairers becomes zero. This phenomenon
known as the repair catastrophe, and was first predicte
Ref. @9#. Nevertheless, ifm is still sufficiently small so that
(a/a11)m< ln k, then the population is still localized abou
the viable ‘‘master’’ sequence, and the fraction of viable
ganisms is positive. InV3 , m is sufficiently large that the
population completely delocalizes over the gene seque
space, a phenomenon known as the error catastrophe.

We may use our three solution pairs to computel5k̄ for
the three solution domains, or phases. We havel5(k
21)z011, so that

l~m,e r !5H ke2erm for ~m,e r !PV1

ke2(a/a11)m for ~m,e r !PV2

1 for ~m,e r !PV3 .

~12!

Figure 2 shows a plot ofl versus (m,e r) for a52, k
510. Figure 3 shows the corresponding plot forz00.

The error and repair catastrophes both arise as a resu
the interplay between two competing effects:~1! The selec-
tive advantage for being viable and for being a repairer a
~2! The entropic tendency to be unviable and a mutator.
a sufficiently low mutation rate, the selective advantage
being viable is strong enough to localize the populat
about sv ia,0. However, when the mutation rate exceeds
critical value, the selective advantage for being viable is
longer sufficiently strong to localize the population about t
viable master sequence, and the population delocalizes
the entire viability subspace. Below the repair catastrop
this occurs when the effective growth rate of the viable,
pairing sequencesv ia,0s rep,0 becomes comparable to th
growth rates of the nonviable sequences, i.e., whenke2erm

51. Above the repair catastrophe, there is no longer

FIG. 1. Diagram illustrating the solution domainsV1 ~black!,
V2 ~gray!, andV3 ~white!. The m axis is labeled only at lnk/er,crit

'3.454, and thee r axis is labeled only ate r ,crit52/3.
2-4
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preference for being a repairer. The effective growth rate
the viable sequences due to mutation off of the viability pe
is ke2am/a11, hence, above the repair catastrophe, the e
catastrophe occurs whenke2am/a1151.

Below the error catastrophe, viable repairers have
slower rate of mutation off of the viability peak than viab
mutators, and hence have a higher effective growth rate.
sufficiently efficient repair, this discrepancy causes locali
tion abouts rep,0. However, when the repair error probabili
exceedse r ,crit5a/a115Lv ia /L, the selective advantag
for being a repairer is no longer sufficient to localize t
population, and the distribution undergoes the repair ca
trophe, in which the distribution delocalizes over the rep
subspace. Note thate r ,crit is simply the fraction of deleteri-
ous mutations and increases with increasinga. This makes
sense, since, the greater the fraction of deleterious mutat
the greater the relative advantage for being a repairer. T
for large a, repair has to be highly inefficient before th
repair catastrophe occurs. Conversely, for lowa, repair has
to be highly efficient to give the repairers a sufficiently lar
advantage for the distribution to localize about the rep
master sequence.

It should be noted that the error and repair catastrop
are similar to thermodynamic phase transitions, in that t

FIG. 2. Plot ofl for a52, k510.

FIG. 3. Plot ofz00 for a52, k510.
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both arise from a competition between maximum fitne
~minimum energy! and maximal entropy. When the replica
tion and repair error probabilities are sufficiently low, max
mal fitness~minimum energy! wins out, leading to localiza-
tion on the sequence space. When the replication or re
error probabilities are sufficiently high, maximal entrop
wins out, leading to delocalization on the sequence sp
While not exact, this analogy nevertheless conceptually
scribes the origin of the phases observed in this study.

In this vein, we should also note that the repair catas
phe is related to the evolution of mutational robustness@23–
29#. In a series of studies initiated by Schuster and Swe
@23#, and continued by Wilke and others@24–29#, it was
shown that at sufficiently high mutation rates, a quasispe
will evolve to a region of sequence space with maximal m
tational support, and not necessarily to a region of maxim
fitness. Essentially, at high mutation rates, the entropic c
of remaining localized to a highly fit but relatively nonrobu
fitness peak becomes sufficiently large that the popula
favors residing on a less fit but more robust fitness ‘‘p
teau.’’ The repair catastrophe is similar to this phenomen
in that, when repair becomes sufficiently inefficient, the e
tropic cost of being localized about the repairing sequenc
no longer outweighed by the advantage of being a repa
resulting in delocalization over the repair subspace.

B. Localization lengths

The final set of quantities we wish to compute are t
following localization lengths of the equilibrium distribution

^ l 8&v ia[ (
l 851

`

l 8z0l 8 , ~13!

^ l & rep[(
l 51

`

lzl0 , ~14!

^ l &[(
l 51

`

(
l 850

`

lzll 8 , ~15!

^ l 8&[ (
l 851

`

(
l 50

`

l 8zll 8 . ~16!

Using the dynamical equations for thezll 8 we may compute
the various localization lengths at equilibrium. The ba
idea is to obtain an expression for the time derivatives of
localization lengths in terms of the localization lengths the
selves, and then solve for the equilibrium value. We illustr
the technique for̂ l 8&v ia . We have
2-5
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d^ l 8&v ia

dt
5 (

l 851

`

l 8
dz0l 8

dt
5k

e rm

a11
e2(a/a11)ermz001ke2m (

l 1850

`

(
l 85 l 1811

` l 82 l 181 l 18

l 18!
S m

a11D l 18

z0,l 82 l
18
2@~k21!z011#^ l 8&v ia

5k
e rm

a11
e2(a/a11)ermz001ke2m (

l 1850

`
1

l 18!
S m

a11D l 18

@^ l 8&v ia1 l 18~z02z00!#2@~k21!z011#^ l 8&v ia

5k
e rm

a11
e2(a/a11)ermz001ke2(a/a11)mS ^ l 8&v ia1

m

a11
~z02z00! D2@~k21!z011#^ l 8&v ia , ~17!

so at equilibrium we obtain

^ l 8&v ia5
km

a11

~e re
2(a/a11)erm2e2(a/a11)m!z001e2(a/a11)mz0

~k21!z0112ke2(a/a11)m
. ~18!

To compute the remaining localization lengths using the above approach, we first need to computez08[( l 50
` zl0. Note thatz08

is simply the total fraction of repairers. We computez08 by evaluatingdz08/dt5( l 50
` dzl0 /dt. The result is an expression i

terms ofz08 , z0, andz00, which may be solved at equilibrium to obtain

z085
~k21!e2erm/a11

~k21!z0112e2erm/a11
z00. ~19!

We then obtain

^ l & rep5
ae rm

a11
e2erm/a11

~k21!z001z08

~k21!z0112e2erm/a11
~20!

~^ l &,^ l 8&!5
1

z0
~0,̂ l 8&v ia!1

m

~k21!~a11!z0
@~k21!z0112~12e r !z082~k21!~12e r !z00#~a,1!. ~21!
in

it
bl

im

s

-

-
r
al-

rob-
1
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pair
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C. Limiting forms of the distribution

It is instructive to study the behavior of the distribution
the following limiting cases:~1! m→0. ~2! a→`. ~3! a
→0. We handle each of these cases in turn.

1. Behavior in the limit µ\0

For m→0, note that z0→1, and z00→(a/a11
2e r)/@a/a11(12e r)#512e r /@a(12e r)#, below the re-
pair catastrophe. We may also note thatz08→z00, and
(^ l &,^ l 8&)→(0,̂ l 8&v ia). This makes sense since in the lim
m→0, we expect that the entire population becomes via
For the same reason,^ l & rep→0 asm→0. Finally, asm→0
for e r,e r ,crit ,

^ l 8&v ia→
1

~a11!S a

a11
2e r D F12~12e r !S 12

e r

a~12e r)
D G

5
1

~a11!~e r ,crit2e r !
e r

a11

a

5~12e r ,crit !/e r ,crit3e r /~e r ,crit2e r !.

As expected, these results agree with the point-mutation l
expressions obtained in Ref.@9#.
01190
e.

it

2. Behavior in the limit a\`

For a→` we obtaine r ,crit51. Hence, we are alway
below the repair catastrophe. As long asm, ln k/er , then
z00→z05(ke2erm21)/(k21). Thus, the solution pairs pre
sented in Table I reduce to two possible solutions. Eitherz0

5z005(ke2erm21)/(k21) if we are below the error catas
trophe (e rm, ln k) or z05z0050 if we are above the erro
catastrophe. This means that the fraction of mutators is
ways zero. To understand this behavior, note that the p
ability of mutating off of the repairer sequence is
2e2erm/a11, while the probability of mutating off of a mu-
tator sequence is 12e2(m/a11). Both go to 0 asa→`.
However, since fore r,1 the repairer sequence has a grea
selective advantage than the mutator sequence, the re
strain comes to dominate the population. Only ate r51 is
there an ambiguity, since (e2erm2e2am/a11)/(e2aerm/a11

2e2am/a11)→0/0, which is undefined. Physically, since
e r51 there is no difference between what we call a repa
and a mutator, we expect delocalization over the repair s
space, so thatz00→0.

We may also note thatz08→z00/z051 for e r,1, and 0
for e r51. We also havê l & rep→ke rme2erm/(ke2erm21).
Also, ^ l 8&v ia→0, for e r,1, and` for e r51.
2-6
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3. Behavior in the limit a\0

For a→0, we havee r ,crit→0. Therefore, for alle r.0
we are beyond the repair catastrophe, and since (a/a
11)m50, ln k, we are below the error catastrophe as w
so thatz051 with z0050. This makes sense, since, fora
50, the probability of mutating off of the viability peak i
12e2(a/a11)m→0. Thus, the entire population is viable
equilibrium. As forz00, we note thatz0050 for e r.0, but
for e r50 we obtain the expression, (e02e0)/(e02e0)3z0
50/0. Physically, we must havez0051 at e r50. This am-
biguity is therefore resolved by lettinga→0 for e r50. That
is, we evaluatez00 for a50,e r50 by settingz00za50,er50

5 lima→0z00za,er50.

As expected, fore r.0 we have z0850, ^ l 8&v ia5`,
^ l & rep50, ^ l &50, and^ l 8&5`. Again, fore r50 we resolve
any ambiguities by lettinga→0, giving, as expected,z08
51, ^ l 8&v ia5^ l & rep5^ l &5^ l 8&50.

V. CONCLUSIONS

This paper presented a two-gene, single fitness p
model to determine the equilibrium distribution of genotyp
in a unicellular population capable of replication error repa
The work presented here was a continuation of Ref.@9#, in
which the equilibrium distribution of mutators was studi
for mutation rates well below the error catastrophe. This
per obtained the equilibrium behavior of the two-gene mo
for arbitrary mutation rates, thereby incorporating both
error and repair catastrophes into a single, two-dimensio
phase diagram. While our model is probably the simplest
could use for studying evolutionary dynamics in the prese
of genetic repair, it does nevertheless make experimen
testable predictions. As mentioned in the Introduction,
error catastrophe has already been observed@30,31#. The re-
pair catastrophe would be more difficult to observe exp
mentally, since it would be necessary to selectively interf
with the DNA mismatch repair system. If possible, howev
it would be interesting to try to experimentally map out t
phase diagram shown in Fig. 1 for an actual organism, s
asE. coli.

In Ref. @9# it was noted that the equilibrium distribution o
mutators did not depend onm, but only one r and a. This
was interesting since the larger the value ofm the greater the
difference in mutation rates off of the viability peak betwe
repairers and mutators. One might also naively expect
al
-
e

01190
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ak
s
.

-
l

e
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e
e

lly
e

i-
e
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h

e

repair catastrophe to disappear entirely asm→0, since the
difference in viability between repairers and mutators dis
pears in the limit of no mutations. In Ref.@9# it was assumed
that mutations were sufficiently slow so that only point m
tations needed to be considered. In the complete mo
when we allow for mutations between any two genomes,
do indeed obtain am dependence on the equilibrium distr
bution of mutators. Interestingly, however, the repair cat
trophe still occurs ate r ,crit5a/a11, unchanged from the
point-mutation result in Ref.@9#.
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APPENDIX A: DERIVATION OF THE FINITE AND
INFINITE SEQUENCE LENGTH FORMS OF

THE DYNAMICAL EQUATIONS

1. The finite sequence length equations

To obtain the finite sequence length equations given
Eq. ~5!, we first obtain the quasispecies equations in terms
the xll 8 . To do this, we need to sum the mutational cont
butions of all s to the time evolution ofxll 8 . Let s l l 8
PCH( l ,l 8). Any s may be obtained froms l l 8 by changing
the appropriate bases. Let us writes l l 85sv ia,ls rep,l 8 and
s5sv ias rep . By definition of the Hamming class,sv ia,l
differs from sv ia,0 in exactly l places. Therefore,sv ia,l is
identical tosv ia,0 in Lv ia2 l places. Of theseLv ia2 l bases,
let l 1 denote the number of bases which are changed ins. Of
the l bases insv ia,l which are distinct from the correspond
ing bases insv ia,0, let l 2 denote the number which ar
changed back to the corresponding bases insv ia,0 when cre-
ating s, and letl 3 denote the number which are changed
bases which are still distinct from the corresponding ones
sv ia,0. The base changes determined byl 1 , l 2, andl 3 yields
a sv ia which is a Hamming distance ofl 11 l 2 l 2 from
sv ia,0, and a Hamming distance ofl 11 l 21 l 3 from sv ia,l .

For the repair gene, we may definel 18 , l 28 , and l 38 simi-
larly. Thus, given some s l l 8PCH( l ,l 8), the vector
( l 1 ,l 2 ,l 3 ,l 18 ,l 28 ,l 38) defines a set of base changes to
s l 11 l 2 l 2 ,l

181 l 82 l
28
PCH( l 11 l 2 l 2 ,l 181 l 82 l 28), such that

DH(s l l 8 ,s l 11 l 2 l 2 ,l
181 l 82 l

28
)5 l 11 l 21 l 31 l 181 l 281 l 38 . We

then obtain that
km~s l 11 l 2 l 2 ,l
181 l 82 l

28
,s l l 8!5k l 11 l 2 l 2

S e l
181 l 82 l

28

S21
D l 11 l 21 l 31 l 181 l 281 l 38

~12e l
181 l 82 l

28
!Lv ia1Lrep2 l 12 l 22 l 32 l 182 l 282 l 38. ~A1!
r a

The total mutational flow rate into a givens l l 8 may be ob-
tained by summing over the mutational flow rates from
possible (l 1 ,l 2 ,l 3 ,l 18 ,l 28 ,l 38). To put together a final expres
sion, we still need to account for degeneracy, since, in g
l

n-

eral, for a givens l l 8 and vector (l 1 ,l 2 ,l 3 ,l 18 ,l 28 ,l 38), there are
multiple ways for generating a new gene sequence. Fo
given l 1, we need to choosel 1 elements out ofLv ia2 l .
Since each selected base can be changed toS21 other bases,
2-7



se

t

ot

ing

E. TANNENBAUM AND E. I. SHAKHNOVICH PHYSICAL REVIEW E 69, 011902 ~2004!
the total number of possibilities forl 1 is ( l 1

Lv ia2 l)(S21)l 1.

For a givenl 2, we need to choosel 2 elements out ofl. Since
each selected base is restored to the corresponding ba
sv ia,0, the total number of possibilities forl 2 is (l 2

l ). Finally,

for a given l 3, we need to choosel 3 elements out of the
remainingl 2 l 2. Since each selected base is changed, bu
not changed back to the corresponding element insv ia,0,
there areS22 possibilities per changed base, hence the t
number of possibilities forl 3 is ( l

l 2 l 2)(S22)l 3. Performing a

3

01190
in

is

al

similar analysis for the repair gene, and putting everyth
together, we obtain a total sequence degeneracy of

S Lv ia2 l

l 1
D S l

l 2
D S l 2 l 2

l 3
D S Lrep2 l 8

l 18
D S l 8

l 28
D S l 82 l 28

l 38
D ~S

21! l 11 l 18~S22! l 31 l 38.

Putting everything together, we obtain
to

ply

e

dxll 8
dt

5 (
l 150

Lv ia2 l

(
l 250

l

(
l 350

l 2 l 2

(
l 1850

Lrep2 l 8

(
l 2850

l 8

(
l 3850

l 82 l 28 S Lv ia2 l

l 1
D S l

l 2
D S l 2 l 2

l 3
D S Lrep2 l 8

l 18
D S l 8

l 28
D S l 82 l 28

l 38
D ~S21! l 11 l 18~S22! l 31 l 38k l 11 l 2 l 2

3S e l
181 l 82 l

28

S21
D l 11 l 21 l 31 l 181 l 281 l 38

~12e l
181 l 82 l

28
!Lv ia1Lrep2 l 12 l 22 l 32 l 182 l 282 l 38xl 11 l 2 l 2 ,l

181 l 82 l
28
2k̄~ t !xll 8 . ~A2!

We may sum overl 3 and l 38 to obtain,

dxll 8
dt

5 (
l 150

Lv ia2 l

(
l 250

l

(
l 1850

Lrep2 l 8

(
l 2850

l 8 S Lv ia2 l

l 1
D S l

l 2
D S Lrep2 l 8

l 18
D S l 8

l 28
D k l 11 l 2 l 2

e
l
181 l 82 l

28

l 11 l 18 ~1

2e l
181 l 82 l

28
!Lv ia1Lrep2 l 2 l 82 l 12 l 18S e l

181 l 82 l
28

S21
D l 21 l 28S 12

e l
181 l 82 l

28

S21
D l 1 l 82 l 22 l 28

xl 11 l 2 l 2 ,l
181 l 82 l

28
2k̄~ t !xll 8 . ~A3!

We may then usezll 85Cll 8xll 8 to obtain Eq.~5! after some manipulation.

2. The infinite sequence length equations

To establish the infinite sequence length form of Eq.~5! in Sec. III, we need to first establish some basic inequalities
facilitate the computation of upper bounds. We begin with the following inequality, forl 1.0:

S l 11 l 2 l 2

l 1
D S e l

181 l 82 l
28

S21
D l 1S 12

e l
181 l 82 l

28

S21
D l 2 l 2

<S e

S21D l 1

)
k51

l 1 k1 l 2 l 2

k
5S e

S21D l 1

)
k51

l 1 S 11
l 2 l 2

k D<S l 11

S21
e D l 1

. ~A4!

Note that this inequality also holds forl 150. A similar inequality holds for the primed indices. Our next inequality is sim

S Lv ia2 l 2 l 11 l 2

l 2
D e

l
181 l 82 l

28

l 2 ~12e l
181 l 82 l

28
!Lv ia2 l 2 l 1<1, ~A5!

and similarly for the primed indices. Finally, we may note thatzll 8<1 for all l ,l 8. Now, to simplify the calculation, denote th
summand in Eq.~5! of Sec. III bySll 1l 2l 8 l

18 l
28
. Then putting together our inequalities, we obtain

(
l 250

l

(
l 2850

l 8

Sl0l 2l 80l
28
< (

l 150

Lv ia2 l

(
l 250

l

(
l 1850

Lrep2 l 8

(
l 2850

l 8

Sll 1l 2l 8 l
18 l

28
< (

l 250

l

(
l 2850

l 8

Sl0l 2l 80l
28
1 (

l 151

Lv ia2 l

(
l 250

l

(
l 2850

l 8

kS l 11

S21
e D l 1

1 (
l 1851

Lrep2 l 8

(
l 2850

l 8

(
l 250

l

kS l 811

S21
e D l 18

1 (
l 151

Lv ia2 l

(
l 250

l

(
l 1851

Lrep2 l 8

(
l 2850

l 8

kS l 11

S21
e D l 1S l 811

S21
e D l 18

5 (
l 250

l

(
l 2850

l 8

Sl0l 2l 80l
28
1k~ l 11!2~ l 811!

e

S21

12S l 11

S21
e D Lv ia2 l

12
l 11

S21
e

1k~ l 11!~ l 811!2
e

S21
2-8



12S l 811

S21
e D Lrep2 l 8

12
l 811

e

1k~ l 11!2~ l 811!2S e

S21D 212S l 11

S21
e D Lv ia2 l

12
l 11

e

12S l 811

S21
e D Lrep2 l 8

12
l 811

e

.

it.
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S21 S21 S21

~A6!

Now, following the argument from Sec. III, we have that, asLv ia ,Lrep→` at fixeda,m,e r , we get that

(
l 250

l

(
l 2850

l 8

Sl0l 2l 80l
28
→ (

l 250

l

(
l 2850

l 8 k l 2 l 2

l 2! l 28!
a l 2S m l 82 l

28

a11
D l 21 l 28

e2m l 82 l 28zl 2 l 2 ,l 82 l
28
, ~A7!

hence, sincee→0 at fixedm whenLv ia ,Lrep→`, we see from the inequalities given in Eq.~A6! that

(
l 150

Lv ia2 l

(
l 250

l

(
l 1850

Lrep2 l 8

(
l 2850

l 8

Sll 1l 2l 8 l
18 l

28
→ (

l 250

l

(
l 2850

l 8 k l 2 l 2

l 2! l 28!
a l 2S m l 82 l

28

a11
D l 21 l 28

e2m l 82 l 28zl 2 l 2 ,l 82 l
28
. ~A8!

The convergence is not uniform, however, since our upper bound depends onl ,l 8.
This establishes the infinite sequence length form of our dynamical equations, as given in Eq.~8! of Sec. III. We may verify

that total probability is conserved in our limiting process. Definingz5( l ,l 8zll 8 , we obtain

dz

dt
5(

l 50

`

(
l 850

`

(
l 150

l

(
l 1850

l 8 k l 2 l 1

l 1! l 18!
a l 1S m l 82 l

18

a11
D l 11 l 18

e2m l 82 l 18zl 2 l 1 ,l 82 l
18
2k̄~ t !z

5 (
l 150

`

(
l 1850

`

(
l 5 l 1

`

(
l 85 l 18

` k l 2 l 1

l 1! l 18!
a l 1S m l 82 l

18

a11
D l 11 l 18

e2m l 82 l 18zl 2 l 1 ,l 82 l
18
2k̄~ t !z

5 (
k150

`

(
k1850

`

kk1
e2mk18zk1 ,k

18 (l 150

`

(
l 1850

`
1

l 1! l 18!
a l 1S mk

18

a11
D l 11 l 18

2k̄~ t !z

5 (
k150

`

(
k1850

`

kk1
zk1 ,k

18
2k̄~ t !z

5k̄~ t !z2k̄~ t !z50. ~A9!

Thus, sincez starts off at 1, it remains 1 at all times, hence total probability is conserved in the infinite sequence lim

APPENDIX B: A RECURSIVE FORMULA FOR THE POPULATION DISTRIBUTION

Givenz0 ,z00, the equilibrium equations may be solved recursively to obtain anyzll 8 for a given (m,e r) pair. Forl 8.0, we
have

dz0l 8
dt

5
k

l 8!
S e rm

a11D l 8
e2ermz001ke2m (

l 1851

l 821
1

l 18!
S m

a11D l 18

z0,l 82 l
18
1ke2mz0l 82@~k21!z011#z0l 8 , ~B1!

so at equilibrium we have

z0l 85
1

~k21!z0112ke2m F k

l 8!
S e rm

a11D l 8
e2ermz001ke2m (

l 1851

l 821
1

l 18!
S m

a11D l 18

z0,l 82 l
18G . ~B2!

We next turn our attention tozl0 for l .0. We have

dzl0

dt
5

k

l ! S ae rm

a11 D l

e2ermz001e2erm (
l 151

l 21
1

l 1! S ae rm

a11 D l 1

zl 2 l 1 ,01e2ermzl02@~k21!z011#zl0 , ~B3!
011902-9
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so at equilibrium we have

zl05
1

~k21!z0112e2erm
F k

l ! S ae rm

a11 D l

e2ermz001e2erm (
l 151

l 21
1

l 1! S ae rm

a11 D l 1

zl 2 l 1 ,0G . ~B4!

Finally, we compute the equilibrium value ofzll 8 recursively forl ,l 8.0. The result is

zll 85
1

~k21!z0112e2m H k

l ! l 8!
a l S e rm

a11D l 1 l 8
e2ermz001

k

l ! S am

a11D l

e2m (
l 1850

l 821
1

l 18!
S m

a11D l 18

z0,l 82 l
18

1
1

l 8!
S e rm

a11D l 8
e2erm (

l 150

l 21
1

l 1! S ae rm

a11 D l 1

zl 2 l 1 ,01e2mF (
l 1851

l 821
1

l 18!
S m

a11D l 18

zl ,l 82 l
18
1 (

l 151

l 21
1

l 1! S am

a11D l 1

zl 2 l 1 ,l 8

1 (
l 151

l 21

(
l 1851

l 821
1

l 1! l 18!
a l 1S m

a11D l 18

zl 2 l 1 ,l 82 l
18G J . ~B5!
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APPENDIX C: NUMERICAL SOLUTION OF THE MODEL
FOR FINITE GENOMES

Equation~5! in Sec. III gives the expression for the Ham
ming class symmetrized dynamics equations of our mo
We can put this equation into matrix form

dzW

dt
5BzW2~kW •zW !zW, ~C1!

wherezW5(zll 8) is the vector of population fractions in th
various Hamming classes,B is the matrix of first-order mu-
tation rate constants between the various Hamming clas
and kW is the vector of first-order growth rate constan
for the various Hamming classes, so thatkW •zW

5( l 50
Lv ia(

l 850

Lrep k l l 8zll 8 , where k l l 8 is simply k l in our
model.

The equilibrium distribution may then be solved usi
fixed-point iteration, via the equation

zWn115
1

kW •zWn

BzWn. ~C2!

In principle, the iterations are terminated when thezn stop
P

B

01190
l.

es,

changing. We introduce a fractional cutoff parameterd, and
stop iterating when (zn1Ne ,l l 82zn,l l 8)/zn,l l 8,d. Ne is cho-

sen to be sufficiently large so that of the order of one mu
tion is allowed to occur afterNe iterations, to ensure tha
equilibration is being accurately measured. For a large
quence lengthL, the probability of correct replication is
e2Le, so the probability of incorrect replication is 12e2Le.
Therefore, takingNe51/(12e2Le) ensures that of the orde
of one incorrect replication has occurred, so that
(zn1Ne ,l l 82zn,l l 8)/zn,l l 8,d for all l ,l 8, then it is possible to

assume that equilibration has been achieved.
Note that what this method does is account for the f

that equilibration takes longer for smaller values ofe, i.e.,
for slower mutation rates. Since lime→0Ne5`, and
lime→1Ne'1 for largeL, we see that our choice ofNe ac-
counts for the slower equilibration rate by iterating mo
times before comparing the changes in thezll 8 . In our nu-
merical simulations, we found thatd51024–1023 was suf-
ficient to achieve good convergence. Fora52, k510, it
was found that forL530 the equilibrium values ofz0 and
z00 were almost identical to theirL5` values. For this rea-
son, we did not give figures showing the results of numeri
simulations in this paper.
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